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The widespread deployment of inexpensive communications technology, computational resources in the networking infrastructure, and
network-enabled end devices poses a problem for end users: how to locate a particular network service or device out of those accessible.
This paper presents the architecture and implementation of a secure wide-area Service Discovery Service (SDS). Service providers use the
SDS to advertise descriptions of available or already running services, while clients use the SDS to compose complex queries for locating
these services. Service descriptions and queries use the eXtensible Markup Language (XML) to encode such factors as cost, performance,
location, and device- or service-specific capabilities. The SDS provides a fault-tolerant, incrementally scalable service for locating services
in the wide-area. Security is a core component of the SDS: communications are both encrypted and authenticated where necessary, and the
system uses a hybrid access control list and capability system to control access to service information. Wide-area query routing is also a
core component of the SDS: all information in the system is potentially reachable by all clients.

Keywords: service discovery

1. Introduction

The decreasing cost of networking technology and net-
work-enabled devices is enabling the large-scale deploy-
ment of both [51]. Simultaneously, significant computa-
tional resources are being deployed within the network in-
frastructure, and this computational infrastructure is being
used to offer many new and innovative services to users
of these network-enabled devices. We define such “ser-
vices” as applications with well-known interfaces that per-
form computation or actions on behalf of users. For exam-
ple, an application that allows a user to control the lights in a
room [23] is a service. Other examples of services are print-
ers, fax machines, music servers, and web services such as
the FreeDB.org CD database.

Ultimately, we expect that, just as there are hundreds of
thousands of web servers, there will be at least hundreds of
thousands of services available to end users. Given this as-
sumption, a key challenge will belocating the appropriate
service for a given task, where “appropriate” has a user-
specific definition (e.g., cost, location, accessibility, etc.).
Clients cannot be expected to track which services are run-
ning or to know which ones can be trusted. Thus, clients
will require a directory service that enables them to locate
the services that they are interested in using, and this service
will have to address such issues as trustworthiness, secure
access, (dis)trust management, endpoint mobility, complex
query support, and scaling behavior. We have built such a
platform, the Ninja1 Service Discovery Service (SDS). The
SDS enables clients to more effectively search for and use
the services available via the network.
1 The Ninja project is developing a scalable, fault-tolerant, distributed,

composable services platform [19].

The SDS is a scalable, fault-tolerant, and secure informa-
tion repository providing clients with directory-style access
to all available services. The SDS can store many types of
information, including descriptions of services that are avail-
able for execution (“unpinned” services), services running
at specific hosts (“pinned” services), available service plat-
forms, and passive data. The SDS supports both push-based
and pull-based access; the former allows passive discovery,
while the latter permits the use of a query model.

Service descriptions and queries are specified in eXtensi-
ble Markup Language (XML) [4], leveraging the flexibility
and semantic-rich content of this self-describing syntax.

The SDS also plays an important role in helping clients
determine the trustworthiness of services, and vice versa.
This role is critical in an open environment, where there
are many opportunities for misuse, both from fraudulent ser-
vices and misbehaving clients. To address security concerns,
the SDS controls the set of agents that have the ability to dis-
cover services, allowing capability-based access control, i.e.,
to hide theexistence of services in addition to disallowing
access to a located service.

As a globally-distributed, wide-area service, the SDS ar-
chitecture addresses challenges beyond those that operate
solely in the local area: network partitions, component fail-
ures, potential bandwidth limitations between entities, work-
load distribution, and application-level query routing be-
tween components.

This paper presents the design of the SDS, focusing on
the architecture of the directory service, the security features
of the system, and the wide-area query model. Section 2
describes the system design concepts. Section 3 discusses
the SDS architecture and its security features. Section 4
discusses wide-area operation. Section 5 presents perfor-
mance measurements from the SDS prototype implementa-
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tion. Section 6 situates the work with a discussion of related
systems. Finally, we summarize and mention future work in
Section 7.

2. Design Concepts

The SDS system is composed of three main components:
clients, services, and SDS servers. Clients want to discover
the services that are running in the network. SDS servers
enable this by soliciting information from the services and
then using it to fulfill client queries. In this section, we will
discuss some of the major concepts used in the SDS design
to meet the needs of service discovery, specifically account-
ing for our goals of scalability, client and service mobility,
support for complex queries, and secure access.

2.1. Announcement-based Information Dissemination

In a system composed of hundreds of thousands of serv-
ers and services, the mean time between component failures
will be small. Thus, one of the most important functions of
the SDS is to quickly react to faults. Additionally, we would
like to support at least coarse-grained mobility of clients and
services, allowing them to change the point where they con-
nect into the system as they move.

The SDS addresses these issues by using soft state
throughout the system [35]. Soft state is maintained through
the combination ofperiodic multicast announcements as the
primary information propagation technique, and information
caching rather than reliable state maintenance in system en-
tities. The caches are updated by the periodic announce-
ments or purged based on the lack of them. In this manner,
component failures and mobility are tolerated in the normal
mode of operation (periodic sending and receiving) rather
than addressed through a special recovery procedure [1].
The combination of periodicity and the use of multicast is
often called the “announce/listen” model in the literature;
it is appropriate where the weaker semantics of “eventual
consistency” suffice (versus transactional semantics). The
announce/listen model initially appeared in IGMP [9], and
was further developed and clarified in protocols such as
RTP/RTCP and the MBone Session Announcement Proto-
col [30]. Refinement of the announce/listen idea to provide
for tolerance of host faults (leveraging multicast’s indirec-
tion within cluster computing environments [2]) appeared
in the context of the AS1 “Active Services” framework [1].
We will describe our specific use of announce/listen in Sec-
tions 3.1 and 3.2.

2.2. XML Service Descriptions

Rather than use flat name-value pairs (as in, e.g., the Ses-
sion Description Protocol [22]), the SDS uses XML [4] to
describe both service descriptions (the identifying informa-
tion submitted by services) and client queries. XML allows
the encoding of arbitrary structures of hierarchical named

<?xml version="1.0"?>
<!doctype printcap system
"http://www/˜ravenben/printer.dtd">

<printcap>
<?xml version="1.0"?> <name>print466; lws466</name>
<printcap> <location>466 soda</location>

<color>yes</color> <color>yes</color>
<postscript>yes</postscript> <postscript>yes</postscript>

</printcap> <duplex>no</duplex>
<rmiaddr>http://joker.cs/lws466</rmiaddr>

</printcap>

(A) (B)

<?xml version="1.0"?>
<!doctype printcap system
"http://www/˜ravenben/printer.dtd">

<printcap>
<name>lws720b</name>
<location>720 soda</location>
<color>yes</color>
<postscript>n/a</postscript>
<duplex>yes</duplex>
<rmiaddr>http://ant.cs/lws720b</rmiaddr>

</printcap>

(C)

Figure 2. (A) an example XML query, (B) a matching service description,
and (C) a failed match.

values; this flexibility allows service providers to create de-
scriptions that are tailored to their type of service and that
can be extended and “subtyped” through the use of multiple
namespaces (schemas).

Valid service descriptions have a few required standard
parameters, while allowing service providers to add service-
specific information – e.g., a printer service might have a
color tag that specifies whether or not the printer is capable
of printing in color. An important advantage of XML over
name-value pairs is the ability to validate service descrip-
tions against a set schema, in the form of Document Type
Definitions (DTDs). Unlike a database schema, DTDs pro-
vide flexibility by allowing optional validation on a per tag
granularity. This allows DTDs to evolve to support new tags
while maintaining backwards compatibility with older XML
documents.

Services encode their service metadata as XML docu-
ments and register them with the SDS. Typical metadata
fields include location, required capabilities, timeout period,
connection protocol, and contact address/port. Clients spec-
ify their queries using an XML template to match against,
which can include service-specific tags. A sample query for
a color Postscript printer and its matching service descrip-
tion are presented in Figure 2.

2.3. Privacy and Authentication

The SDS assumes that malicious users may attack the
system via eavesdropping on network traffic, endpoint
spoofing, replaying packets, making changes to in-flight
packets (e.g., using a “man-in-the-middle” attack to return
fraudulent information in response to requests), and the like.
To thwart such attacks, privacy is maintained via encryp-
tion of all information sent between system entities (i.e.,
between clients and SDS servers and between services and
SDS servers). To reduce the overhead of the encryption, a
traditional hybrid of asymmetric and symmetric-key cryp-
tography is used – an long-lived asymmetric key is used to
deliver a per-session symmetric key.
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(Note: Not all connections are shown)
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Figure 1. Components of the Service Discovery Service. Dashed lines correspond to periodic multicast communication between components, while solid
lines correspond to one-time Java RMI connections.

However, encryption alone is insufficient to prevent
fraud. Thus, the SDS uses cryptographic methods to pro-
vide strong authentication of endpoints. Associated with ev-
ery component in the SDS system is a principal name and
public-key certificate that can be used to prove the compo-
nent’s identity to all other components (see Section 3.3.1).
By making authentication an integral part of the SDS, we
can incorporate trust levels into the process used by clients
to locate useful services. Clients can specify the principals
that they both trust and have access to, and when they pose
queries, a SDS server will return only those services that are
run by the specified, trusted principals.

For example, the official network support staff in a com-
puter science department could maintain an official CS Di-
vision principal. All the services they maintain, from print-
ers to email servers, would be signed using this principal.
Whenever clients perform searches, they could specify that
they only desire services run by the CS Division princi-
pal, ensuring that only the official email servers and print-
ers would be returned. This prevents them from accidentally
connecting to services run by individuals in the department.
Of course, they can make use of these service by simply in-
cluding those individual’s principals in their searches.

The SDS also supports the advertisement and location
of private services, by allowing services to specify which
“capabilities” are required to learn of a service’s existence.
Capabilities are signed messages indicating that a particu-
lar user has access to a class of services. Whenever a client
makes a query, it also supplies the user’s capabilities to the
SDS server. The SDS server ensures that it will only return
the services for which the user has valid capabilities. Sec-
tion 3.3.2 elaborates on the use of capabilities.

Section 3.3 provides details of our use of authentica-
tion and encryption in the architecture, while Section 5.1.1
presents our measurements of the cost of these security com-
ponents.

2.4. Hierarchical Organization

As a scalability mechanism, SDS servers organize into
multiple shared hierarchies. Figure 1 illustrates an example
configuration with a single hierarchy. Service announcers
and queriers dynamically discover some server in the hierar-
chy and interact with the entire system through it, similar to
DNS [32]. The coverage of a particular SDS server is called
a “domain,” and it is defined as a list of CIDR address ranges
that can change with time.

In addition to providing a structure for the neighbor rela-
tionships between running servers, hierarchical organization
also provides a mechanism for shedding server load – if a
particular SDS server is overloaded, a new SDS server can
be spawned on a nearby machine (if available), assigned to
be a child of the overloaded server, and allocated a portion
of the network extent and, thus, a portion of the load.

Discussion of hierarchical organization is treated in Sec-
tion 4.3.

3. Architecture

Figure 1 illustrates the architecture of the Service Dis-
covery Service, which consists of five components: SDS
servers, services, capability managers, certificate authorities,
and clients. In the following sections, we describe the com-
ponents that compose the SDS, focusing on their roles in the
system and how they interact with one another to provide
SDS system functionality.

3.1. SDS servers

3.1.1. Basic operation
Each server is responsible for sending authenticated mes-

sages containing a list of the domains that it is responsi-
ble for on the well-known SDS multicast channel. These
domain advertisements contain the multicast address to use
for sending service announcements, the desired service an-
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nouncement rate, and contact information for the Certifi-
cate Authority and Capability Manager (described in Sec-
tions 3.3.1 and 3.3.2). The messages are sent periodically us-
ing announce/listen. The aggregate rate of the channel is set
by the server administrator to a fixed fraction of total avail-
able bandwidth; the maximum individual announcement rate
is determined by listening to the channel, estimating the
message population, and from this estimate, determining
the per-message repeat rate, ala SAP [30] and RTCP [45].
(SDS servers send this value out as a part of their adver-
tisements so individual services do not have to compute it.)
Varying the aggregate announcement rate exhibits a band-
width/latency trade-off: higher rates reduce SDS server fail-
ure discovery latency at a cost of more network traffic. Us-
ing a measurement-based periodicity estimation algorithm
keeps the traffic from overloading the channel as the number
of advertisers grows, allowing local traffic to scale.

3.1.2. Cluster operation and fault tolerance
SDS servers can utilize local computer clusters to address

coarse-grained load balancing and add robustness to node
failures. In the case of load balancing, when the service load
reaches a certain threshold on an SDS server, it can option-
ally spawn a new child server. The new server is assigned to
be a child of the parent in one or more hierarchies, and is al-
located a portion of the existing load by accepting a fraction
of the parent’s network extent. In the case of fault tolerance,
nearby servers that share multicast connectivity act as mir-
rors, sharing local multicast state updates. If a server goes
down, a peer will notice and, silent to the clients and ser-
vices, take over [1].

If a server with no transparent backups goes down, its
neighbors will notice the lapse in heartbeats and option-
ally attempt to restart it (possibly elsewhere if the node
itself is no longer available). Restarted servers populate
their databases by listening to the existing service announce-
ments, thereby avoiding the need for an explicit recovery
mechanism. Additionally, because registered services are
still sending to the original multicast address while this tran-
sition occurs, the rebuilding is transparent to them. If more
than one server goes down, recovery will start from the top
of the hierarchy and cascade downwards using the regular
protocol operation.

In the case of a network partition, a parent will detect
the loss of its child’s heartbeats and either start a new child
to serve the child’s domain or add the child’s domain to its
own announcements. It will think the child has crashed even
though it has not. The disconnected child will attempt to find
a new parent. If it finds one, it will graft onto the hierarchy
at this new point, and if not, it simply continues operating as
before. Clients and services will continue to use the running
server on their side of the partition, possibly after a delay of
one or more announcement periods for those transitioning
to the newly-spawned child or to the parent (i.e., they need
to hear either a new or modified announcement). Operation
continues as usual until the network partition heals. At this

point, there will be two servers advertising overlapping net-
work extent, possibly with different parents. This is detected
either when these servers hear each other’s announcements
on the bootstrap address, or when a child hears two over-
lapping announcements. (Clients will be the only ones able
to detect this when the servers are using directed broadcast
rather than multicast to serve multiple subnets, as is done
with BOOTP, DHCP, and the like.) At this point, based on
their combined load, they either elect one to be a transpar-
ent mirror (as described above) or they split the domain into
non-overlappingsections to service independently. The chil-
dren may still not share a parent, but this doesn’t affect the
correctness of the protocol operation. Advanced hierarchy
maintenance protocols can detect this non-optimal operating
behavior at a coarse time scale and adapt to it by notifying
particular servers to change their network extent; while we
have not defined such a process, it can be implemented using
the existing protocol mechanisms.

3.1.3. Accepting services and clients
An SDS server’s domain is specified as a list of CIDR

network address/mask pairs. This syntax allows for com-
plete flexibility in coverage space while providing efficient
representation when domains align to the underlying topol-
ogy. Once an SDS server has established its own domain, it
begins caching the service descriptions that are advertised
in the domain. The SDS server does this by decrypting
all incoming service announcements using thesecure one-
way service broadcast protocol (see Section 3.3.4), a pro-
tocol that provides service description privacy and authen-
tication. Once the description is decrypted, the SDS server
adds the description to its database and updates the descrip-
tion’s timestamp. Periodically, the SDS flushes old service
descriptions based on the timestamp of their last announce-
ment. The flush timeout is an absolute threshold which cur-
rently defaults to five times the requested announcement pe-
riod.

The primary function of the SDS is to answer client
queries. A client uses Authenticated RMI (Section 3.3.5)
to connect to the SDS server providing coverage for its area,
and submits a query in the form of an XML template along
with the client’s capabilities (access rights). The SDS server
uses its internal XSet [55] XML search engine to search for
service descriptions that both match the query and are acces-
sible to the user (i.e., the user’s capability is on the service
description’s ACL). Depending upon the type of query, the
SDS server returns either the best match or a list of possible
matches. In those cases where the local server fails to find a
match, it forwards the query to other SDS servers based on
its wide-area query routing tables as described in Section 4.

Note that SDS servers are a trusted resource in this ar-
chitecture: services trust SDS servers with descriptions of
private services in the domain. Because of this trust, care-
ful security precautions must be taken with computers run-
ning SDS servers — such as, e.g., physically securing them
in locked rooms. On the other hand, the SDS server does
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not provide any guarantee that a “matched” service correctly
implements the service advertised. It only guarantees that
the returned service description is signed by the certificate
authority specified in the description. Clients must decide
for themselves if they trust a particular service based on the
signing certificate authority.

3.2. Services

Services need to perform three tasks in order to partic-
ipate in the SDS system. The first task is to continuously
listen for SDS server announcements on the global multicast
channel in order to determine the appropriate SDS server for
its service descriptions. Finding the correct SDS server is
not a one-time task because SDS servers may crash or new
servers may be added to the system, and the service must
react to these changes.

After determining the correct SDS server, a service then
multicasts its service descriptions to the proper channel, with
the proper frequency, as specified in the SDS server’s an-
nouncement. The service sends the descriptions using au-
thenticated, encrypted one-way service broadcasts. The ser-
vice can optionally allow other clients to listen to these an-
nouncements by distributing the encryption key.

Finally, individual services are responsible for contacting
a Capability Manager and properly defining the capabilities
for individual users (as will be described in Section 3.3.2,
below).

3.3. Security Components

3.3.1. Certificate Authority
The SDS uses certificates to authenticate the bindings be-

tween principals and their public keys (i.e., verifying the dig-
ital signatures used to establish the identities of SDS compo-
nents). Certificates are signed by a well-known Certificate
Authority (CA), whose public key is assumed to be known
by everyone. The CA also distributesencryption key cer-
tificates that bind a short-lived encryption key (instead of a
long-lived authentication key) to a principal. This encryp-
tion key is used to securely send information to that princi-
pal. These encryption key certificates are signed using the
principal’s public key.

The operation of the Certificate Authority is fairly straight-
forward: a client contacts the CA and specifies the princi-
pal’s certificate that it is interested in, and the CA returns
the matching certificate. Since certificates are meant to be
public, the CA does not need to authenticate clients to dis-
tribute the certificate to them; possessing a certificate does
not benefit clients unless they also possesses the private key
associated with it. Accepting new certificates is also simple,
since the certificates can be verified by examining the sig-
natures that are embedded within the certificates. This also
means the administration and protection of the Certificate
Authority does not have to be elaborate.

3.3.2. Capability Manager
The SDS uses capabilities as a hybrid access control

mechanism to enable services to control the set of users that
are allowed to discover their existence. In traditional access
control, SDS servers would have to talk to a central server
to verify a user’s access rights for each search. Capabilities
avoid this because they can be verified locally, eliminating
the need to contact a central server each time an access con-
trol list check is needed.

A capability proves that a particular client is on the access
control list for a service by embedding the client’s principal
name and the service name, signed by some well-known au-
thority. To aid in revocation, capabilities have embedded
expiration times.

To avoid burdening each service with the requirement that
it generate and distribute capabilities to all its users, we use a
Capability Manager (CM) to perform the function. Each ser-
vice contacts the CM, and after authentication, specifies an
access control list (a list of the principal names, as described
in Section 2.3, of all clients that are permitted access to the
service’s description). The CM then generates the appropri-
ate capabilities and saves them for later distribution. Since
the signing is done on-line, the host running the CM must
be secure. Capability distribution itself can be done without
authentication because capabilities, like certificates, are se-
curely associated with a single principal, and only the clients
possessing the appropriate private key can use them.

3.3.3. Authenticated Server Announcements
Due to the nature of SDS servers, their announcements

must have two properties: they must be readable by all
clients and non-forgeable. Given these requirements, SDS
servers sign their announcements but do not encrypt them.
In addition, they include a timestamp to prevent replay at-
tacks.

3.3.4. Secure One-way Service Description Announcements
Protecting service announcements is more complicated

than protecting server announcements: their information
must be kept private while allowing the receiver to verify
authenticity. A simple solution would be to use asymmet-
ric encryption, but the difficulty with this is that asymmetric
cryptography is extremely slow. Efficiency is an issue in this
case, because SDS servers might have to handle thousands
of these announcements per hour. Using just symmetric key
encryption would ensure suitable performance, but is also a
poor choice, because it requires both the server and service
to share a secret, violating the soft-state model.

Our solution is to use a hybrid public/symmetric key sys-
tem that allows services to transmit a single packet describ-
ing themselves securely while allowing SDS servers to de-
crypt the payload using a symmetric key. Figure 3 shows the
packet format for service announcements. Theciphered se-
cret portion of the packet contains a symmetric key (SK) that
is encrypted using the destination server’s public encryption
key (EK). This symmetric key (SK) is then used to encrypt
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ID Ciphered Secret Payload

Sender Name fSender, Destination, Expire, SK , Sign(CP )gEK fData, Time, MACgSK

Figure 3. Secure One-Way Broadcast Packet format:SK – shared service-to-server secret key, Sign(CP ) – signature of the ciphered secret using the
service private key,EK – server public key, and MAC – message authentication code.

the rest of the packet (the data payload).
To further improve efficiency, services change their sym-

metric key infrequently. Thus, SDS servers can cache the
symmetric key for a particular service and avoid performing
the public key decryption for future messages for the life-
time of the symmetric key. Additionally, if the service de-
sires other clients to be able to decrypt the announcements,
the service needs only to distributeSK .

The design of one-way service description announce-
ments is a good match to the SDS soft-state model: each
announcement includes all the information the SDS server
needs to decrypt it.

3.3.5. Authenticated RMI
For communication between pairs of SDS servers and be-

tween client applications and SDS servers, we useAuthen-
ticated Remote Method Invocation (ARMI), as implemented
by the Ninja project [52]. ARMI allows applications to in-
voke methods on remote objects in a two-way authenticated
and encrypted fashion. The choice of ARMI is a function
of our use of Java and orthogonal to the system design; the
necessary functionality can be mapped onto other secure in-
vocation protocols.

Authentication consists of a short handshake that estab-
lishes a symmetric key used for the rest of the session. As
with the other components in the SDS, ARMI uses certifi-
cates to authenticate each of the endpoints. The implemen-
tation also allows application writers to specify a set of cer-
tificates to be accepted for a connection.

The performance of ARMI is discussed in Section 5.

3.4. Bootstrapping

The SDS bootstrapping technique is analogous to “for-
eign agent solicitation” and “foreign agent advertisement”
in Mobile IP [33] extended beyond a single local subnet.
Clients discover the SDS server for their domain by listen-
ing to a well-known SDS global multicast address. Our as-
sumption is that all participating subnets will be covered by
some SDS server that has multicast connectivity to its po-
tential clients; in the case where a server does not have mul-
ticast connectivity to some portion of its network extent, it
will try directed broadcasts to those subnets. If these are
filtered (due to their potential use in denial-of-service at-
tacks), affected clients will only be able to use manually
specified or previously-discovered SDS servers. Alterna-
tively or additionally, as an optimization, a client can so-
licit an asynchronous SDS server announcement by using
expanding ring search (ERS) [10]: TTL-limited query mes-
sages are sent to the SDS global multicast address, and the

TTL is increased until there is a response.

4. Wide-Area Support

The previous section detailed the local interactions of
SDS servers, clients, and service advertisers. In this section,
we describe our approach to server-to-server interaction. In
this regime, the key problem is scaling with respect to the
number of service descriptions and queries in the system.

We begin with a discussion of the basic problem posed
by distributed multi-criteria search, and use this to motivate
our approach to addressing this issue, a hierarchical query
filtering infrastructure.

4.1. The Challenge of Multi-criteria Search

One novelty of the SDS is that it attacks a more difficult
problem than other lookup infrastructures. This is due to the
allowance for multi-criteria selection in queries (i.e., arbi-
trary sets of attribute-value pairs rather than a single element
in a flat or hierarchical namespace), and the fact that these
complex queries are allowed to transit the entire global In-
ternet during resolution. Multiple existing systems present
solutions for either complex queries or wide-area distribu-
tion independently; few address both.

Many popular service location schemes do not attempt
to address wide-area distribution – e.g., Jini’s Lookup ser-
vice [50] and the IETF Service Location Protocol (SLP) [21].2

Location schemes for name lookup that do provide global-
scale operation can be dissected into categories based on
their approach to query routing and their support (or lack
thereof) for multi-criteria selection. These categories are
Centralization, Mapping, and Flooding, and we describe the
general principles of each in turn.

Centralization: Schemes that use centralization include
Napster [16] and Web search engines. The scheme enables
multi-criteria search, and can be scaled up through the use
of computer clusters connected by fast LAN or SAN net-
works [17]. Unfortunately, though, this elegant approach
suffers known problems: the cluster is a single point of fail-
ure, a single point of litigation (i.e., must secure legal rights
to the data it is processing), and has an inherent single owner,
which forbids sharing between entities that are unwilling to
trust one another with their data.

Name-specified mapping to neighbor(s): Given the
limits of centralization, schemes such as Globe [49], Ocean-
Store’s Tapestry [56], Chord [47], Freenet [6], and Data-
2 A deprecated SLP extension [40] does attempt to provision for “cross-

domain brokering,” but does not give any indication of how to scale such
an approach.
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Space [24] permit data to remain distributed and partitioned,
using some scheme to decide where to pass a query given the
name to be resolved. A popular scheme for providing these
mappings ishashing, e.g., Consistent Hashing [26]. These
mappings are 1-to-M, where M is small, thereby giving a
namespace-determined, deterministic mapping from a name
to a set of nodes. This provides a natural partitioning of the
system data, and thus query and inter-server message traffic
is carefully managed: only a small number of endpoints are
given a query, and together they can unequivocally respond
with a negative or positive response.

The problem with namespace-based mapping is that it
cannot provide multi-criteria selection. The intuition vali-
dating this claim is as follows. Assume that each document
in the system is assigned to a unique partition based on some
name-based mapping scheme. Without loss of generality,
assume documents satisfyingCRITERIA1 maps toNODES1 and
CRITERIA2 maps toNODES2. Now consider a document satis-
fying both CRITERIA1 andCRITERIA2. For queries containing
either CRITERIA1 or CRITERIA2 to return correct results, the
documents would have to live at bothNODES1 and NODES2,
violating the non-duplication assumption. Thus, our only al-
ternative is thatNODES1 = NODES2. Taking this a step further,
the transitive closure of overlapping criteria form cliques,
and these cliques must all live at the same set of nodes.
In other words, ifDOC1 satisfiesCRITERIA1 and CRITERIA2,
and DOC2 satisfiesCRITERIA2 and CRITERIA3, and DOC3 sat-
isfies CRITERIA3 and CRITERIA4, all documentsDOC1, DOC2,
andDOC3 must be colocated, greatly constraining our ability
to partition data. In the worst case, a certain criteria could
be very popular and thus force most documents to one set
of nodes. One way around this is by unnaturally biasing to-
ward one criteria, and requiring all queries to contain it, as
is done in DataSpace. Another way is to allow documents
to reside in multiple partitions. In this latter case, though,
using a similar argument as that above, each document in
a clique would have to be duplicated at each related node,
leading to excessive duplication. This defeats the purpose of
partitioning.

Thus, the implication of supporting multi-criteria selec-
tion is that there is no natural data partition. Lack of parti-
tioned data leads us to the next technique.

Flooding: An approach that avoids the listed limitations
of centralization and mapping is flooding, the technique used
by Gnutella [18] and link-state IP routing protocols [31].
Flooding addresses the lack of controlled data partitioning
by sending queries to all nodes in the system. This has been
shown to work at the “enterprise” level, and to a limited de-
gree beyond that, but there are inherent limitations to the
scalability of such an approach: the least-provisioned links
limit the ability to propagate messages through the rest of
the system [7,38]. This is not a problem for inter-domain
IP routing table maintenance because the workload is con-
trolled through the specification of the update periodicity.
Location infrastructures cannot similarly bound the work-
load because it is not a system parameter – queries are user-

generated.
Other strategies use a hybrid of one or more of these ap-

proaches. For example, the stalwart DNS [32] hybridizes
mapping and centralization: data is partitioned, and names
are mapped hop-by-hop based on name suffixes, while re-
liable “base pointers” for all names are centralized (at the
root servers). The scheme works well through the use of ex-
tensive positive and negative caching and by keeping update
rates low.

4.2. A New Approach: Query Filtering

We have now summarized the three classes of location
techniques and their shortcomings. In the design of the SDS
we have made a design decision that, in steady-state condi-
tions, an advertised service should be found by a matching
query. We call this propertyfull reachability. This enables
clients to access all services in all SDS servers, modulo ac-
cess control provisions. Additionally, the SDS provides sup-
port for the type of multi-criteria selection enabled by local-
area, centralized approaches. Given these decisions, an ob-
vious next question is: how do we support this feature set in
a manner that scales better than flooding?

Our answer is an approach called filtered query flooding,
or more simply,query filtering. It hybridizes flooding, map-
ping, and when used in a hierarchy, centralization. There are
two key ideas here. First, instead of using only a pull-based
protocol, where a query initiates an exchange of informa-
tion, we can also apply a push model, where state informa-
tion is reported to nodes in the system via proactiveupdate
messages. Second, instead of proactively filling nodes with
cached query responses from the information in updates, we
instead propagatesummaries of node contents, which are
used asfilters that are applied to queries. In this sense, up-
dates are filter state updates rather than data cache updates.

A third idea is that, when used with nodes organized in
a hierarchy, the approach utilizes centralization. Summaries
are collapsed and aggregated as they move farther from their
source, eventually all culminating at the top of the hierarchy.
The centralization is not a requisite feature, though, only a
byproduct of its use with a tree topology.

Filtered query flooding draws from existing approaches
in its design. In the distributed database community, the no-
tion of allowing data to be sent to the queries, in addition
to vice-versa, is called “hybrid-shipping client-server query
processing” or “cache investment” [27]. In the context of
distributed Web caching, our approach looks like a combi-
nation of the use of the pull-based Internet Cache Protocol
(ICP) [53] and push-based Cache Digests [41], modified to
account for multiple-criteria queries.

To implement query filtering, we have to address its two
major components: dynamic construction and adaptation of
the neighbor relationships between SDS servers, and pro-
visioning of an application-level filtering infrastructure al-
lowing servers to propagate information through the topol-
ogy. The information propagation problem can be further
decomposed into two sub-problems: providing lossy aggre-
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gation of service descriptions as they travel farther from their
source (setting up filter state along the way), and dynami-
cally flooding client queries through the filters to the appro-
priate servers based on the local aggregate data. In short, we
must build and use “query routing tables.”

We now discuss our proposed solutions to these prob-
lems, and variations on the approach. We start with topology
management, then cover information aggregation and query
routing. With continue with details on range queries, wild-
cards, negative caching, and soft-state encoding of the sys-
tem messages, and close with a description of our testbed.
Experimental results are in Section 5.

4.3. Server Topology Management

The two most common topologies for peer-to-peer lo-
cation systems are meshes and trees; all the systems dis-
cussed thus far in this paper use one or the other. Ocean-
Store’s architecture illustrates the tradeoffs and features of
each through its separation of discovery into 1) a mesh-based
probabilistic search, combined with 2) a deterministic ap-
proach that builds a hierarchy (tree) per data item inside a
shared hypercube [28].

Following the example of DNS [32], the SDS runs over
a set of hierarchical interconnections. In doing so, the SDS
avoids the need for loop detection (which is left to be man-
aged at a lower layer), and avoids the need for maintain-
ing per-query state for unresolved queries – all path info is
bundled into query metadata and passed along with it. In
contrast, systems not guaranteed to be loop-free must ei-
ther maintain a cache of unique identifiers for all queries that
have been handled, and/or rely on decrementing a TTL field,
in order to know when to drop queries. Additionally, the
use of a tree for distribution provides an intrinsic notion of
‘up,’ thereby allowing us to (optionally) avoid maintaining
filter state for one direction, a direction that is passed missed
queries by default. The major disadvantage of a hierarchical
topology is that a node cannot shortcut arbitrary combina-
tions of paths, i.e., cannot be in two places in the hierarchy
efficiently, as it could be in a mesh structure.3

Two key questions arise given the use of hierarchy: what
trees to build, and how to construct them. The first question
is a policy decision that we feel must be determined through
experience rather than wired into the architecture; the sec-
ond is a choice of mechanism that is dependent on the type
of hierarchy to be maintained. Because the policy decision
is left to be determined by operational experience, our solu-
tion to it is to allow for the use ofmultiple hierarchies, and
thus support multiple policies. Examples of possible useful
hierarchies include those based on administrative domains
(school or company divisions), network topology (network
hops), network metrics (bandwidth or delay), or geographic
location (distance). The additional utility of supporting mul-
3 Allowing ‘cross-cutting paths’ in our hierarchy – basically, additional

connection and filter state between interior nodes – is a possible way to
emulate mesh path shortcuts, but the utility of such an approach has not
been verified.

tiple hierarchies is that they are independently useful: users
can choose to make queries that resolve based on a specific
hierarchy, thereby allowing querying for a service based on,
e.g., geographic proximity in one case and ownership in an-
other. Additionally, as underlying network characteristics
change, servers can gradually build new hierarchies aligned
to the new circumstances, and transition to use of them.

Individual SDS servers participate in one or more of these
hierarchies by maintaining separate pointers to parents and
children for each hierarchy, along with any associated “rout-
ing table data” (described below) for each pointer. To guar-
antee that a query can reach all SDS servers, one particular
hierarchy must be supported by all servers – the so-called
“primary” hierarchy. Our current implementation uses an
administrative primary hierarchy (calledADMIN ), but a bet-
ter choice would be one based on the underlying network
characteristics – such as topology or bandwidth – because
such a hierarchy requires no manual setup. Specification of
a primary hierarchy is not a requirement for correct opera-
tion, but instead a optional, recommended way of supporting
full reachability.

Our previous descriptions of SDS client/server operation
does not address how parent/child relationships are deter-
mined. Examples of possible mechanisms for constructing
these parent/child relationships include using manual speci-
fication in configuration files (e.g., to indicate administrative
divisions), using geographic data (e.g., through the use of
GPS or DNS LOC records [8]), using topological data (e.g.,
using topology discovery [29,37]), or using network mea-
surements (e.g., using a tool such as SPAND [46] to derive
bandwidth and latency information). A novel and robust ap-
proach for generating distribution trees (in our case, shared)
is that taken by Gossamer [5]: build a resilient mesh at a
lower layer, and run a routing protocol atop it to construct
the trees. Leveraging the layering of the Gossamer protocol
stack, with its clear distinction between Mesh Management,
Routing, and Data Distribution, we can reuse their lower-
layer functionality, replacing Gossamer’s data distribution
layer – which focuses on multipoint distribution – with our
own for query and update distribution. Additionally, the
SDS would benefit from replacing Gossamer’s latency-based
path metric with a bandwidth-based one.

Individual node failures can be tolerated in the same man-
ner as is used to tolerate single-server failure in the local-
area case: have multiple workstations listen in on the an-
nounce/listen messages and leverage the indirection to trans-
parently select amongst themselves, a form of mirroring de-
scribed in the Active Services framework [1].

4.4. Description Aggregation and Query Routing

Query filtering reduces the load on servers in the upper
tiers of the hierarchy by localizing query traffic. Similarly,
individual update operations are not propagated up the hi-
erarchy; instead, information about these events issumma-
rized into an “index.” We call the summarization of ser-
vice descriptions as they travel up the hierarchy “description
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Name Description Possible Responses

All-Pass/Null Filtering no updates – equivalent to flooding yes, false yes

Brokering subset of list of service descriptions yes, no, false no

Centroid-Indexed Terminals (CIT) list of all tag values for each element yes, no, false yes

Bloom-filtered Crossed Terminals (BCT) criteria hashes put into a Bloom filter yes, no, false yes

Table 1
Summary of Query Filtering Schemes. Filters determine whether to send queries through or turn them back. The ‘Possible Responses’ column indicates
the nature of the information contained in the filter, any of four types:YES – can indicate a hit will occur if the query is sent through;FALSE YES– can
indicate a hit will occur, while actually the query will result in a miss;NO – can indicate a miss will occur;FALSE NO – can indicate a miss will occur,

while actually the query will result in a hit. “Terminals” and “Crossed Terminals” are defined in Section 4.4.1.

aggregation,” and the process used to combine descriptions
the lossy aggregation function of the hierarchy. We call the
operation of iterating through the tree, comparing queries
against the indices to determine whether the branch they are
summarizing contains a match for that query, “query rout-
ing.” Naturally, these operations are often inextricably com-
bined, as the nature of the description aggregation defines
how queries are routed.

Now that the context has been set, we can delve into
some example query filtering schemes. A summary of these
schemes is shown in Table 1. We start by describing the
filtering scheme designed for use with the SDS – Bloom-
filtered crossed terminals (BCT) – and then describe the oth-
ers that we compare against it.

4.4.1. Bloom-filtered crossed terminals
The default SDS query filtering strategy is “Bloom-

filtered crossed terminals” (BCT). BCT is based on the idea
of breaking queries/services down to their constituent crite-
ria, hashing them alone and in aggregate, and inserting these
into a Bloom filter [3] to compress the list of hashes. The
intuition and details are as follows.

Existing name-based mapping strategies hash an object
identifier to decide its location (as might be done with URLs
in web caching). Because we wish to locate services based
on subsets of tags, just computing hashes over service de-
scriptions and queries is not sufficient for correct operation:
all possible matching query values hashes would have to be
computed. To clarify the problem, imagine a service de-
scription with three tags. There are seven possible queries
that should “hit” it: each tag individually, the three combi-
nations of pairs of tags, and all three tags together. Each
of these possible queries would need to be hashed and these
hashes stored to guarantee correctness. There are obvious
problems with computing all these possible hashes: the num-
ber of hashes scales exponentially with respect to the number
of tags, and thus the amount of space required to store and
transmit the hashes produced (seen as memory usage at lo-
cal servers and update bandwidth on the network) would be
excessive. Additionally, there is no way to bound the size of
the resulting list.

Our solution to this problem is to limit the number of
hashes by limiting the number of tag concatenations. We
define the generation of hash entries from tags in terms of

CT3 =
S
3

i=1 fA;B;Cg
i

= fA;B;Cg [ fA;B;Cg2 [ fA;B;Cg3

= fA;B;Cg [ fAB;AC;BCg [ fABCg

= fA;B;C;AB;AC;BC;ABCg

Figure 4. An example of computing the third-degree Crossed Terminal Set
from a base terminal set (A, B, C).

a parameter that effectively trades an increased probability
of false positives for hash-list size and vice versa. The pa-
rameter,N , is a measure of of the completeness of the tag
concatenations relative to the original document. More for-
mally, we define the initial base set of data from a description
or query aterminal set. A terminal set is the linearization of
an hierarchical XML document, comprised of the list of tags
generated by walking from root-to-leaf for all nodes in the
DOM tree [54] of the document. We then define aN th-
degree crossed terminal set as the set containing all combi-
nations of elements from the terminal set of length less than
or equal toN . Specifically:

SN
i=1 terminalsi where the

product of set elements,termA
 termB , is defined as con-
catenation whentermA < termB and the empty set when
termA � termB ; comparisons are lexigraphic. An exam-
ple is shown in Figure 4. Limiting the degree of the crossed
terminal set (reducingN ) increases the probability of false
positives, but also limits the number of items to hash. Thus
the degree addresses the exponential growth in a manner that
gives a “knob” that can trade false positives for list size and
vice-versa.

Incoming queries must be similarly broken up into
crossed terminals (groups of tag combinations) and checked
to avoid a false negative.

Given the use of crossed terminal sets, we would like to
limit the total space that can be occupied by them. To do
so, we insert them into a Bloom filter to compress them.
The key property of Bloom filters is that they provide sum-
marization of a set of data, but collapse this data into a
fixed-size table, trading off an increased probability of false
positives (“increased summarization”) for index size – ex-
actly the knob we need to address the issue of long hash
lists. This use of Bloom filters is motivated by a simi-
lar use in Web caching [14]. A Bloom filter compresses
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Figure 5. Aggregation of Bloom filters.

a list of datad1:::dn by using a given list of salts4 s1:::sk
to create a bit vector of lengthL. Bit x is set if and only
if hash(di + sj) mod L = x for somei and j. Inclu-
sion of data itemd is queried by testing all the bit positions
hash(d + si) mod L for eachi 2 1:::k. If all are set, then
the item is assumed to be a member of the compressed list
of data, though it may or may not be (there can be false pos-
itive responses). If any are not set, thend 62 d1:::dn. The
basic probability of false positives (independent of table ag-
gregation or degree of the crossed terminals that are hashed)
can be reduced by using more salts and/or a longer bit vec-
tor [15]. This approach never causes false negatives, thereby
maintaining the correctness of our lossy aggregation func-
tion in the face of the need for full reachability.

Now we explain how these ideas are applied to SDS query
routing: upon receipt of a service announcement, an SDS
serverS1 applies multiple hash functions (using keyed MD5
and/or groups of bits from a single MD5 depending on ta-
ble size) to various subsets of tags in the service description
(the crossed terminal set) and uses the results to set bits in
a bit vector. The resulting bit vector (the filter) summarizes
its collection of descriptions. This filter is given to neigh-
bor S2. WhenS2 receives a query that it cannot resolve
locally, it checks to see if the query should be forwarded to
S1 by similarly multiply hashing it and checking that all the
matching bits are set inS1’s filter. If any are not set, then
the service is definitely not there – it is a “true miss.” If all
are set, then either the query hit, or a “false positive” may
have occurred due to aliasing in the table. The latter forces
unneeded additional forwarding of the query, but does not
sacrifice correctness.

If an SDS server is also acting as an internal node, it will
have children. Associated with each child will be a similar
bit vector. To perform index aggregation, each server takes
all its children’s bit vectors and ORs them together with each
other and its own bit vector. This fixed-size table is passed
to the parent (using a delta encoding to conserve bandwidth),
who then associates it with that branch of the tree. This is
illustrated in Figure 5.

To route queries, the algorithm is as follows: if a query is
coming up the hierarchy, the receiving SDS server checks to
see if it hits locally or in any of its children; if not, it passes
4 The salts are used to produce multiple hash values from a single data

value.

it upward. If it is coming down the hierarchy, the query is
checked locally and against the children’s tables. If there is
a hit locally, the query is resolved locally. If there is a hit
in any of the children’s tables, the query is routed down to
the matching children either sequentially or in parallel. If
neither of these occur, it is a known miss. We call this for-
warding schemeparent-based filtering (PBF) because up-
dates are propagated only up the hierarchy, not down to chil-
dren. An implemented variation on the above, calledfull
indexing, maintains filter information for parents in addition
to children. In this case, the algorithm is simpler: instead
of checking only children and then passing to the parent if
they all miss, the server checks all neighbors’ filters and acts
accordingly.

A final problem to address: the bit vectors must be
cleaned up when a service shuts down or moves – we would
like to zero their matching bits. Bits cannot be zeroed di-
rectly, though, because another hash operation may have also
set them, and zeroing them would not preserve full reacha-
bility (i.e., could cause a false negative). To address this, the
tables must either be periodically rebuilt, or per-bit counts
must be tallied and propagated along with the tables. We
use per-bit reference counting, as is done in the Summary
Cache [14] work.

4.4.2. Alternative filtering schemes
We now discuss the other three filtering schemes from

Table 1.
The simplest possible filter is the “all-pass” or “null” fil-

ter, which lets everything through. This behavior is equiv-
alent to flooding, as with Gnutella, except that due to the
SDS’s tree structure, queries eventually go to the root rather
than circulate through a mesh. The benefits of a null filter is
that no updates are required, while the disadvantage is that
is promises maximal query load.

Another possible approach is “brokering.” With broker-
ing, a child decides some criteria for determining whether
to pass service descriptions along to its parent. Those that
do not match the criteria remain unreported, available only
to those nodes locally attached (violating full reachability);
those that do are sent in full to the neighbor. Depending on
the selectivity of the criteria, this can arbitrarily reduce query
load and update load. Also, passing the complete description
is verbose – no compression occurs as the list grows – but it
supports fast and correct operation (no false positives).

A more substantial filter is the “centroid-indexed termi-
nals” scheme (CIT). The basis for this filter scheme is an
approach for WHOIS++/LDAP server content trading called
“centroids” [13]. Computing a centroid involves taking a list
of key-value pairs and creating a concordance of all possible
values for each key. An example is shown in Figure 6.

Because the SDS deals with hierarchical sets of key-value
pairs (XML documents) instead of a flat list, we have imple-
mented a modified form of this approach. To do so, we first
create the terminal set (as defined above) of the service de-
scriptions to be sent, and the centroid is then computed on
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<first>Frank</first><last>Zappa</last>

<first>Moon</first><last>Zappa</last>

<first>John</first><last>Lennon</last>

+

<first>: Frank Moon John
<last>: Zappa Lennon

Figure 6. An example of computing the centroid of XML fragments from
three documents. At top is the data to be summarized; below it is the result-

ing centroid.

the terminal set. The benefit of CIT is fact that updates de-
crease in size as they are aggregated (except in statistically
unlikely worst-case workloads); the downside is that both
aliasing (e.g., “Frank Lennon” in Figure 6) and the use of
the terminal set can lead to false positives.

4.5. Range Queries, Wildcards, and Negative Caching

Various filtering techniques have different levels of sup-
port for searches with wildcards and/or range queries, e.g.,
those expressed as
<name comparison=‘*’>* Zappa</name> or
<size comparison=‘gt’>10</size>. Flooding, brokering, and
CIT support both these query types naturally, with no addi-
tional performance degradation; BCT supports neither nat-
urally. Full support for both of these more powerful query
types is added by having forwarding nodes treat XML el-
ements with the specialcomparison attributes differently:
when making filtering decisions, the comparison attribute
and element’s value are elided. This maintains correct-
ness but reduces the efficacy of the filters. (The attribute
and valueare used when querying against the cache of ser-
vice descriptions, and this can done efficiently via XSet,
XQL [39], XML-QL [11], or the like.)

BCT does not efficiently support such wildcarding or
range queries because of a more general problem: it can’t
determine the cause of false positives. A way around this
difficulty is to append information on known false positives
(KFPs) to the metadata of failed queries. This technique is
the equivalent ofnegative caching in the regime of query
filtering; Mockapetris and Dunlap show the importance of
such negative caching for name lookup in the context of the
DNS [32]. KFP caching is implemented as follows. When
returning a true miss, a server can optionally attempt to rec-
ognize the criteria combination that caused the false positive
that got it there in the first place, and list it as a KFP on
the response. Such a thing might occur due to the complex-
ity of the query (having many common terms), the use of a
wildcard, or the use of a range query. KFPs are cached on
a per-filter basis, and used to allow more aggressive pruning
of query propagation, and, more importantly, to address the
problem of popular true misses.

KFPs cannot be passed further down a tree blindly be-
cause updates to neighbors are indications of the aggregate
state of all outgoing links of a node, not the state of a single
link. They can be passed, though, when all the other links in

the node have either 1) a known negative or 2) an identical
cached KFP – information that would be obtained after the
first time a true miss is flooded throughout the tree.

4.6. Encoding Issues for Soft-State Messaging

Communications using a soft-state approach must not
rely on state maintenance at the endpoints [35]. This means
that either a complete set of information must be contained
in application data units (ADUs), or information must be
versioned and version mismatches must cause the soft-state
cache to be flushed – the endpoints are implying that they no
longer agree what the contents of any shared state may be.
Following this model, the various soft-state encodings of the
messages for wide-area query routing are as follows:

� Updates: In addition to including the deltas (differences)
between the current table state and the previous table
state, a fragment of the existing table is also included.
The particular fragment changes with time, as can its
size. The addition of these table fragments allows any er-
rors or omissions in the local copy of the remote table to
be eventually corrected – without requiring the endpoints
to know the exact state of each other.

� Queries: Queries are inherently stateless, as all path in-
formation is maintained as metadata wrapped up along
with the query. SDS servers along the path read and up-
date this metadata at each hop to mark the progress of the
query through the overall structure.

� Query Replies: Query replies, like queries, are basically
inherently stateless – except for the optional inclusion of
negative caching information in the form of known false
positives (KFPs). To address this, KFP lists are encoded
as deltas with associated version numbers. If a receiving
server notes a jump in the version number that is not cor-
rected via retransmissions, it flushes its cache of KFPs.

4.7. Summary of Node Internals

The complete operation of an SDS server node perform-
ing wide-area query filtering is summarized in Figure 7. The
figure shows the path of queries as bold arrows and the path
of filter updates at thin arrows. Query responses follow the
reverse path of queries.

4.8. Testbed

We have implemented and simulated the components of
our wide-area query routing solution and a suite of variations
to better understand the design space. In addition to Bloom-
based filtering (BCT), we have implemented all the filtering
strategies from Table 1. In addition to parent-based query
forwarding, we have implemented an update algorithm that
propagates update information to all neighbors – “full” up-
date forwarding. In addition to sequential (serial) query
forwarding, we have implemented a query routing scheme
that allows queries to “bifurcate” through the tree in parallel
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Figure 7. SDS Node Internals for a single hierarchy. Dark arrows are the path of a query; thin arrows are the path of filter updates. Replies follow the
reverse path of queries. The service description cache returns hits; the known false positives cache and filter return misses.

rather than sequentially. Detailed quantitative results show-
ing tradeoffs with the four indexing strategies are presented
in Section 5.2.

5. System Performance

In this section, we examine the performance of the SDS
and its underlying search capabilities.

5.1. Single-server Performance

Measurements of the local-area service-to-server and
client-to-server interactions are averaged over 100 trials and
were made using Intel Pentium II 350MHz machines with
128MB of RAM, running Slackware Linux 2.0.36. We used
Sun’s JDK 1.1.7 with the TYA JIT compiler. For security
support, we use thejava.security package, where possi-
ble, and otherwise we use the Cryptix security library. For
the XML parser, we use Microsoft’s MSXML version 1.9.
We assume that the majority of SDS queries will contain
a small number of search constraints, and use that model
for our performance tests. The XML workload consists of
XML files generated by converting other sources of data:
printer configuration information and a subset of the CDs
from the FreeDB CD database. For secure communications,
SDS uses an authenticated RMI implementation developed
by the Ninja research group [52], which we modified to use
Blowfish [43] instead of TripleDES.

5.1.1. Security Component
Table 2 lists the various costs of the security mechanisms

used in the SDS. We profile the use of DSA certificates [42]
for both signing and verifying information, RSA [42] en-
cryption and decryption as used in the service broadcasts,
and Blowfish as used in authenticated RMI. Note that both
DSA and RSA are asymmetric key algorithms, while Blow-
fish is a symmetric key algorithm. All execution times were

Name Time

DSA Signature 33.1 ms
DSA Verification 133.4 ms
RSA Encryption 15.5 ms
RSA Decryption 142.5 ms
Blowfish Encryption 2.0 ms
Blowfish Decryption 1.7 ms

Table 2
Timings of cryptographic routines

Files Query Time

1000 1.17 ms
5000 1.43 ms

10000 2.64 ms
20000 2.76 ms
40000 4.40 ms
80000 5.64 ms

160000 6.24 ms

Table 3
XSet Query Performance

determined by verifying/signing or encrypting/decrypting
1KB input blocks. The measurements verify what should
be expected: the asymmetric algorithms, DSA and RSA, are
much more computationally expensive than the symmetric
key algorithm. This validates the design choice of provid-
ing symmetric-key crypto for the fast path. DSA verification
time is especially high because it verifies two signatures per
certificate: the certificate owner’s signature and the certifi-
cate authority’s signature.

5.1.2. XML Search Component
We use the XSet XML [55] search engine to perform

queries against the service description cache. To maximize
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Empty Full
Query Query

Insecure 24.5 ms 36.0 ms
Secure 40.5 ms 82.0 ms

Table 4
Query Latencies for Various Configurations

performance, XSet builds an evolutionary hierarchical tag
index, with per-tag references stored in treaps (probabilis-
tic self-balancing trees). As a result, XSet’s query latency
increases only logarithmically with increases in the size of
the dataset. The performance results are shown in Table 3.
To reduce the cost of query processing, validation of service
descriptions against their associated Document Type Defini-
tion (DTD) is performed only once, the first time it is seen,
not per query or per announcement.

5.1.3. Aggregate Search Performance
Table 4 lists the latencies for various SDS single-node

queries: both empty and full queries, with security enabled
and disabled. Times do not include the cost of session ini-
tialization, which is amortized over multiple queries. The
basic (empty, insecure) query time includes RMI and net-
work overhead; secure queries add encryption overhead, and
non-null (“full”) queries add search time and overhead due
to their additional length. Service announcement process-
ing time, which includes both decryption and processing of
a single 1.2KB service announcement, averages 9.2ms.

Table 5 shows the average performance breakdown of
a single-node secure SDS query from a single client. The
SDS server was receiving service descriptions at a rate of 10
1.2KB announcements per second; XSet contained twenty
service descriptions; and the search lists seven different ca-
pabilities to test. (As Table 3 shows, expanding the service
description database contributes little additional latency.)
Note that the table splits encryption time between its client
and server components, and that RMI overhead includes the
time spent reading from the network. The unaccounted over-
head is probably due to context switches, competing network
traffic, and object/array copying. As can be inferred from the
table, security accounts for27% of the total processing cost,
a significant but not dominating percentage.

Extrapolating these performance numbers, we approxi-
mate that a single SDS server can handle approximately
eighty clients sending queries at a rate of one query per sec-
ond.

5.2. Wide-area Performance

Measurements of wide-area interaction were made us-
ing an Intel Pentium III 500MHz with 512KB of cache and
128MB of RAM running Red Hat Linux 2.2.12-20 and Sun’s
JDK 1.2. Our testbed runs on a single node, with messages
sent between SDS servers via intra-JVM method calls. Ev-
ery aspect of these “simulations” is identical to real oper-

Query Component Latency

Query Encryption (client-side) 5.3 ms
Query Decryption (server-side) 5.2 ms
RMI Overhead 18.3 ms
Query XML Processing 9.8 ms
Capability Checking 18.0 ms
Query Result Encryption (server-side) 5.6 ms
Query Result Decryption (client-side) 5.4 ms
Query Unaccounted Overhead 14.4 ms

Total (Secure XML Query) 82.0 ms

Table 5
Secure Query Latency Breakdown

0
100
200
300
400
500
600
700

up
da

te
 lo

ad
  (

kb
)

0

500

1000

1500

2000

qu
er

y 
lo

ad
  (

kb
)

updates queries

0

500

1000

1500

2000

to
ta

l l
oa

d 
 (

kb
)

KEY

Null

Brokering

CIT

BCT

total load

Figure 8. Line, Q:U=2:1 Comparison of aggregate query bandwidth, up-
date bandwidth, and total bandwidth for the four filtering schemes in a linear

topology with twice as many queries as updates.

ation except for the transport mechanism. For XML pro-
cessing we use a non-validating parser written by ourselves.
For the benchmarks, queries are sent up neighbor links in
some serial order (not “bifurcated”), we use only a sin-
gle hierarchy, encryption and authentication are turned off,
and parent-based forwarding (rather than full forwarding) is
used. Workloads are comprised of service announcements
derived from CD descriptions from the FreeDB CD database
(converted to XML); queries are generated by randomly se-
lecting a single tag from a possible service description and
asking for it. For the case of Brokering, all service descrip-
tions are passed to neighbors (the brokering criteria is “send
all services”), thereby maintaining full reachability and not
artificially skewing results in favor of the scheme.

We now present the results of direct comparisons of the
four implemented indexing strategies from Section 4.4. We
attempt to tease out the fundamental trade-offs between
the schemes through the use of focused “microbenchmark”
workloads on small topologies. In assessing the approaches,
there are two key components to account for: required
update traffic (determined by the description aggregation



14 T. Hodes et al. / An Architecture for Secure Wide-Area Service Discovery

0

100

200

300

400

500

up
da

te
 lo

ad
  (

kb
)

0

200

400

600

800

qu
er

y 
lo

ad
  (

kb
)

updates queries

0

200

400

600

800

to
ta

l l
oa

d 
 (

kb
)

KEY

Null

Brokering

CIT

BCT

total load

Figure 9. Tree, Q:U=2:1 Comparison of aggregate query bandwidth, up-
date bandwidth, and total bandwidth for the four filtering schemes in a bi-

nary tree topology with twice as many queries as updates.

scheme) and its effect on query traffic. A given workload
can be used to analyze filters by summing their total update
message load and total query traffic load on a per-link ba-
sis. This aggregate metric – total load – can then be further
compared by looking at averages, the maximum, etc. In a
hierarchy, the roots will often be the scaling bottleneck, and
thus we compare worst-case maximum total loads.

Our first benchmark looks at ten SDS servers in a linear
topology, thereby investigating the basic properties of a sam-
ple leaf-to-root path. Each server in the line has one entity
communicating with it, either a querier or service announcer
alternating along the line. Queriers send periodic queries,
while service announcers send periodic service registrations.
There are twice as many queries as updates, and thus the
query-to-update ratio is two (Q:U=2:1). Results are shown
in Figure 8. The figure (and the others like it) is composed of
three bar graphs. The top-left graph shows total update load
on the y axis, and the various links in the topology sorted
along the x axis. The top-right graph shows total query load
on the y axis, and also has the various links in the topology
along the y axis. The larger bar graph is the sum of the two
smaller graphs, and it indicates per-link total load. As can be
seen, null filtering requires no update traffic but pays the toll
in much greater query traffic. Brokering, CIT, and BCT all
send similar amounts of query traffic, but broker updates are
larger than CIT updates, which in turn are larger than BCT
updates. Thus, the worst-case total load is smallest for BCT,
illustrating it works well for this workload and topology.

Our second and third benchmarks look at a seven-node
binary tree topology. In this case there is a querier and ser-
vice announcer at each node in the tree. Results are shown
in Figure 9 and Figure 10. They are treated together to illus-
trate the importance of update-to-query ratio. The only dif-
ference between the two tests is that in Figure 9 the query-
to-update ratio is 2:1, while in Figure 10 this ratio is 1:1.
(Specifically, update load is doubled in the latter.) In the for-
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Figure 10.Tree, Q:U=1:1 Comparison of aggregate query bandwidth, up-
date bandwidth, and total bandwidth for the four filtering schemes in a bi-

nary tree topology with an equal number of updates and queries.

mer case, the performance results maintain that the filtering
strategies perform in the same rank order as with the linear
topology (BCT performs best). In the latter, it is actually
the null filter that exhibits minimum worst-case total load.
What this illustrates is that the cost of updates, whatever the
scheme, must be offset by enough of a query load to make
the investment worthwhile. In short, with very high service
join/leave rates, flooding may be the best policy. Of known
workloads for location services (e.g., mp3 file sharing, DNS
lookups), query rate dominates service join/leave rate, and
thus our results generally suggest the use of query filtering
rather than tree flooding. But Figure 10 is instructive: it
argues forworkload-based filter policy control, where the
push/pull tradeoff is either based on an analysis of a static
workload, or otherwise dynamically adapted as the work-
load varies.

6. Related Work

Service discovery is an area of research that has a long
history. Many of the ideas in the SDS have been influenced
by previous projects.

6.1. DNS and Globe

The Internet Domain Naming Service [32] and Globe [49]
(conceptual descendents of Grapevine [44]) are examples of
systems which perform global discovery of known services:
in the former case, names are mapped to addresses; in the
latter, object identifiers are mapped to the object broker that
manages it. An assumption of this type of service discovery
is that keys (DNS fully-qualified domain names or Globe
unique object identifiers) uniquely map to a service, and that
these keys are the query terms. Another assumption is that
all resources are public; access control is done at the appli-
cation level rather than in the discovery infrastructure.
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The scalability and robustness of DNS and Globe derives
from the hierarchical structure inherent in their unique ser-
vice names. The resolution path to the service is embedded
inside the name, establishing implicit query-routing, thus
making the problem they address different from that of the
SDS.

6.2. Condor Classads

The “classads” [34] service discovery model was de-
signed to address resource allocation (primarily locating
and using off-peak computing cycles) in the Condor sys-
tem. Classads provides confidential service discovery and
management using a flexible and complex description lan-
guage. Descriptions of services are kept by a centralized
matchmaker; the matcher maps clients’ requests to adver-
tised services, and informs both parties of the pairing. Ad-
vertisements and requirements published by the client ad-
here to a classad specification, which is an extensible lan-
guage similar to XML. The matchmaking protocol provides
flexible matching policies. Because classads are designed to
only provide hints for matching service owners and clients,
a weak consistency model is sufficient and solves the stale
data problem.

The classads model is not applicable to wide-area service
discovery. The matchmaker is a single point of failure and
performance bottleneck, limiting both scalability and fault-
tolerance. Additionally, while the matchmaker ensures the
authenticity and confidentiality of service, communication
between parties is not secure.

6.3. Jini

The Jini [50] software package from Sun Microsystems
provides the basis for both the Jini connection technology
and the Jini distributed system. In order for clients to dis-
cover new hardware and software services, the system pro-
vides the Jini Lookup Service [48], which has functionality
similar to the SDS.

When a new service or Jini device is first connected to a
Jini connection system, it locates the local Lookup service
using a combination of multicast announcement, request,
and unicast response protocols (discovery). The service then
sends a Java object to the Lookup service that implements
its service interface (join), which is used as a search tem-
plate for future client search requests (lookup). Freshness is
maintained through the use of leases.

The query model in Jini is drastically different from that
of the SDS. The Jini searching mechanism uses the Java se-
rialized object matching mechanism from JavaSpaces [48],
which is based on exact matching of serialized objects. As
a result, it is prone to false negatives due to, e.g., class ver-
sioning problems. One benefit of the Jini approach is that
it permits matching against subtypes, which is analogous to
matching subtrees in XML. A detriment of the model is that
it requires a Java interface object be sent over the network
to the lookup service to act as the template; such represen-

tations cannot be stored or transported as efficiently as other
approaches.

Security has not been a focus of Jini. Access control is
checked upon attempting to register with a service, rather
than when attempting to discover it; in other words, Jini
protects access to the service but not discovery of the ser-
vice. Furthermore, communication in the Jini Lookup ser-
vice is done via Java RMI, which is non-encrypted and prone
to snooping. Finally, the Jini Lookup Service specifies no
mechanism for server-, client-, or service-side authentica-
tion.

A final point of distinction is the approach to wide area
scalability. While the SDS has a notion of distributed hi-
erarchies for data partitioning and an aggregation scheme
among them, Jini uses a loose notion of federations, each
corresponding to a local administrative domain. While Jini
mentions the use of inter-lookup service registration, it’s un-
clear how Jini will use it to solve the wide-area scaling issue.
In addition, the use of Java serialized objects makes aggre-
gation difficult.

Despite the differences in architecture, we have created
a Jini proxy that enables the SDS to discover Jini-enabled
services and devices, similar to the SLP-Jini bridge [20]. In
essence, we created a proxy that listens for Jini services us-
ing their discovery protocol, and upon finding new services,
relays their descriptions (suitably transformed) to the SDS
system.

6.4. SLP

The IETF Service Location Protocol (SLP) [21], and its
wide-area extension (WASRV) [40], address many of the
same issues as the SDS, and some that are not (e.g., inter-
nationalization). The design of the SDS has benefited from
many of the ideas found in SLP, while attempting to make
improvements in selected areas.

The SLP local-area discovery techniques are nearly iden-
tical to those of the SDS: Multicast is used for announce-
ments and bootstrapping, and service information is cached
in Directory Agents (DAs), a counterpart to the SDS server.
Timeouts are used for implicit service deregistration.

As for scaling beyond the local area, there are actually
two different mechanisms: named scopes and brokering. In
the former scheme, the local administrative domain is parti-
tioned into named User Agent “scopes” from a flat scoping
namespace. The scheme is not designed to scale globally. In
the latter scheme, the approach is to pick an entity in each
SLP administrative domain (SLPD) to act as an Advertising
Agent (AA), and for these AAs to multicast selected service
information to a wide-area multicast group shared amongst
them. Brokering Agents (BAs) in each SLPD listen to multi-
casts from SLPD AAs, and advertise those services to the lo-
cal SLPD as if they were SAs in the local domain. While the
WASRV strategy does succeed in bridging multiple SLPDs,
it does not address a basic problem: the AAs must be config-
ured to determine which service descriptions are propagated
between SLPDs; in the worst case, everything is propagated,
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each domain will have a copy of all services, and thus there is
no “lossy aggregation” of service information. This inhibits
the scheme from scaling any better than linearly with the
number of services advertised and the number of AAs/BAs.
Additionally, WASRV’s reliance on wide-area multicast is
ill-advised given existing deployment difficulties with inter-
domain multicast routing [12].

One of the most useful aspects of SLP is its structure for
describing service information. Services are organized into
service types, and each type is associated with a service tem-
plate that defines the required attributes that a service de-
scription for that service type must contain [21]. The func-
tionality and expressiveness of this framework is almost an
exact mapping onto the functionality of XML: each template
in SLP provides the same functionality as an XML schema
or DTD. Queries in SLP return a service URL, whereas
XML queries in the SDS returns the XML document itself
(which can itself be a pointer using the XML XRef facility).
There are some benefits to using XML rather than templates
for this task. First, because of XML’s flexible tag structure,
service descriptions may, for example, have multiple loca-
tion values or provide novel extensions (for example, en-
coding Java RMI stubs inside the XML document itself).
Second, since references to DTDs reside within XML docu-
ments, SDS service descriptions are self-describing.

A final point of contrast between SLP and SDS is secu-
rity. SLP provides authentication in the local administrative
domain, but not cross-domain. Authentication blocks can
be requested using an optional field in the service request,
providing a guarantee of data integrity, but no mechanism is
offered for authentication of User Agents. Additionally, be-
cause of a lack of access control, confidentiality of service
information cannot be guaranteed.

Though the systems are disparate, we would like SLP and
the SDS to cooperate rather than compete in providing infor-
mation to clients. We believe that, as with Jini, this could be
achieved through proxying.

6.5. Decentralized Distributed Location Services

Recent projects such as Tapestry [56], Chord [47], and
Content-Addressable Networks (CAN) [36] have focused on
providing name-to-location mapping services over the wide-
area utilizing overlay networks. The systems provide a dis-
tributed hashtable interface, mapping an object’s location
given its global unique identifier.

These location services are novel in that they provide
wide-area scalability in a decentralized manner by organiz-
ing nodes in the form of a hypercube or mesh, with each
node maintaining routing state that scales sublinearly with
the size of the network. Queries are routed based on the ob-
ject identifier directly to the object location.

The key distinction between these location services and
the SDS is support for multi-criteria searches. While Chord,
CAN, and Tapestry provide efficient mappings from a sin-
gle unique identifier to a location, they are insufficient when

users are searching for an unknown resource or object based
on descriptive requirements.

7. Conclusion

7.1. Summary

The continuing growth of networks, network-enabled de-
vices, and network services is increasing the need for net-
work directory services. The SDS provides network-enabled
devices with an easy-to-use method for discovering services
that are available. It is a directory-style service that provides
a contact point for making complex queries against cached
service descriptions advertised by services. The SDS auto-
matically adapts its behavior to handle failures of both SDS
servers and services, hiding the complexities of fault recov-
ery from the client applications. The SDS is also security-
minded; it ensures that all communication between compo-
nents is secure and aids in determining the trustworthiness
of particular services.

The SDS soft-state model and announcement-based ar-
chitecture offers superior handling of faults and changes in
the network topology. It handles the addition of new servers
and services, while also recognizing when existing services
have failed or are otherwise no longer available.

The use of XML to encode service descriptions and client
queries also gives the SDS certain advantages. Service
providers will be able to capitalize on the extensibility of
XML by constructing service-specific tags to better describe
the services that they offer. Likewise, XML will enable
clients to make more powerful queries by taking advantage
of the semantic-rich service descriptions.

Finally, the SDS integrated security model protects the
sensitive information belonging to services, as well as assists
clients in locating trustworthy services. By exploring design
issues in the SDS, we hope to better understand the trade-
offs involved in offering this level of privacy.

7.2. Future Work

In ongoing work, we are incorporating various result
caching strategies to enable short-cut routing from one in-
terior node to another. Additionally, we are investigating an
approach that allows indexing strategies to differ based on
the workload presented to the system and the local traffic
conditions. We call this approach “hybrid indexing:” given
that particular filtering strategies perform better for differing
workloads, and given noa priori knowledge of workload,
allowing local optimizations rather than a static strategy
should enable better overall performance. SDS servers could
measure the query-to-update ratio, and vary the amount of
information in updates and/or the underlying filtering strat-
egy.

A more radical design change we are considering is to
attempt query filtering over a mesh rather than in a shared
hierarchy. One possible approach to accomplish this would
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be to generate a set of loop-free paths in the mesh (pos-
sibly reusing underlying BGP path vectors), and apply the
update/filtering technique as before. This maintains the ba-
sic query filtering functionality, but generalizes it in a way
where misses do not propagate to some shared root node
– instead, each autonomous system (AS) would know the
contents of its BGP neighbors, and queries would be passed
from domain to domain.

We have generated performance results showing the
tradeoff between update bandwidth and query routing effi-
ciency exposed by full forwarding, but have not had the time
to analyze them. Similarly, were are still investigating the
results on the tradeoff between query response latency and
total bandwidth used when queries bifurcate.

Finally, our approach to mobility support can be aug-
mented with the use of forwarding pointers [25] to deal with
especially high-mobility clients, and such pointers could
elevate to stable positions in the hierarchy as is done in
Globe [49].
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